Mechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Wavelet Time-Frequency Entropy and One-Class Support Vector Machine
نویسندگان
چکیده
Mechanical faults of high voltage circuit breakers (HVCBs) are one of the most important factors that affect the reliability of power system operation. Because of the limitation of a lack of samples of each fault type; some fault conditions can be recognized as a normal condition. The fault diagnosis results of HVCBs seriously affect the operation reliability of the entire power system. In order to improve the fault diagnosis accuracy of HVCBs; a method for mechanical fault diagnosis of HVCBs based on wavelet time-frequency entropy (WTFE) and one-class support vector machine (OCSVM) is proposed. In this method; the S-transform (ST) is proposed to analyze the energy time-frequency distribution of HVCBs’ vibration signals. Then; WTFE is selected as the feature vector that reflects the information characteristics of vibration signals in the time and frequency domains. OCSVM is used for judging whether a mechanical fault of HVCBs has occurred or not. In order to improve the fault detection accuracy; a particle swarm optimization (PSO) algorithm is employed to optimize the parameters of OCSVM; including the window width of the kernel function and error limit. If the mechanical fault is confirmed; a support vector machine (SVM)-based classifier will be used to recognize the fault type. The experiments carried on a real SF6 HVCB demonstrated the improved effectiveness of the new approach.
منابع مشابه
A New Fault Diagnosis Method for High Voltage Circuit Breakers Based on Wavelet Packet and Radical Basis Function Neural Network
A new method that researching fault diagnosis of high-voltage (HV) circuit breaker (CB) is proposed. The method combines Wavelet Packet (WP) with Radical Basis Function (RBF) Neural Network (NN). Firstly, by applying the theory of WP decomposition and reconstruction, the mechanical vibration signal of CB was decomposed into different frequency bands, and the coefficients are reconstructed in th...
متن کاملFault diagnosis in a distillation column using a support vector machine based classifier
Fault diagnosis has always been an essential aspect of control system design. This is necessary due to the growing demand for increased performance and safety of industrial systems is discussed. Support vector machine classifier is a new technique based on statistical learning theory and is designed to reduce structural bias. Support vector machine classification in many applications in v...
متن کاملUsing Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملMechanical Fault Diagnosis of High Voltage Circuit Breakers Based on Variational Mode Decomposition and Multi-Layer Classifier
Mechanical fault diagnosis of high-voltage circuit breakers (HVCBs) based on vibration signal analysis is one of the most significant issues in improving the reliability and reducing the outage cost for power systems. The limitation of training samples and types of machine faults in HVCBs causes the existing mechanical fault diagnostic methods to recognize new types of machine faults easily wit...
متن کاملMechanical Fault Diagnosis of High Voltage Circuit Breakers with Unknown Fault Type Using Hybrid Classifier Based on LMD and Time Segmentation Energy Entropy
In order to improve the identification accuracy of the high voltage circuit breakers’ (HVCBs) mechanical fault types without training samples, a novel mechanical fault diagnosis method of HVCBs using a hybrid classifier constructed with Support Vector Data Description (SVDD) and fuzzy c-means (FCM) clustering method based on Local Mean Decomposition (LMD) and time segmentation energy entropy (T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016